# Trirubidium Heptachlorodimanganate 

By J. Goodyear, E. M. Ali and H. H. Sutherland<br>Physics Department, The University, Hull HU6 7RX, England

(Received 7 April 1978; accepted 2 May 1978)


#### Abstract

Rb}_{3} \mathrm{Mn}_{2} \mathrm{Cl}_{7}\), tetragonal, $\quad 14 / \mathrm{mmm}, a=$ 5.05 (1), $c=26 \cdot 14$ (5) $\AA$, $D_{o}=3.05, D_{x}=3.06 \mathrm{~g}$ $\mathrm{cm}^{-3}, Z=2$. The final $R$ was 0.080 for 98 visually estimated data. Mn ions are octahedrally coordinated by Cl ions. Each MnCl octahedron shares five vertices with neighbouring octahedra to form slices of perovskite-type structure, two unit cells thick, parallel to (100), alternate slices being displaced a distance $a / \sqrt{ } 2$ in the [110] direction. Cl ions at the unshared vertices are linked to the $\mathrm{Rb}(1)$ ions in the adjacent slice of perovskite structure such that each $\mathrm{Rb}(1)$ ion is coordinated by nine Cl ions. The $\mathrm{Rb}(2)$ ions lie within the slices and each is coordinated by 12 Cl ions. The structure is strictly isomorphous with that of $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$.


Introduction. $\mathrm{Rb}_{2} \mathrm{Mn}_{2} \mathrm{Cl}_{7}$ has previously been examined by Seifert \& Koknat (1965) using an X-ray powder technique. They found a body-centred tetragonal cell with $a=5.059$ (5) and $c=26.146$ (10) $\AA$ and, on the basis of these data and an observed density of 3.04 g $\mathrm{cm}^{-3}$, proposed a structure for the compound which was, in fact, isomorphous with that of $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$ (Ruddlesden \& Popper, 1958).
The material studied in this work was prepared by heating stoichiometric amounts of RbCl and $\mathrm{MnCl}_{2}$ in an evacuated silica tube until molten and then cooling the sample at the rate of $5^{\circ} \mathrm{C}^{-1}$. Because of the very hygroscopic nature of the compound, the crystal selected for X-ray examination was mounted in a sealed Lindemann-glass tube.

Unit-cell dimensions were determined from $\alpha_{1}-\alpha_{2}$ doublet separations on a zero-layer Weissenberg photograph taken about $a$ with $\mathrm{Cu} K \alpha\left(\lambda_{\alpha_{1}}=1.54051 \AA\right)$ radiation. These and the observed ${ }^{\alpha 1}$ density agreed, within experimental error, with the data given by Seifert \& Koknat (1965).

Intensity data were collected from Weissenberg equiinclination photographs taken about the $a$ axis with Mo $K \alpha$ radiation. The intensities of 98 symmetrically independent reflections were measured visually on layer lines $0-4$ from accurately timed film exposures. The systematically absent reflections were all of the type $h$ $+k+l=2 n+1$, consistent with $I 4 / \mathrm{mmm}$, the space group of $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$. These data were corrected for the Lorentz-polarization factor and for absorption; for the
latter the crystal was assumed to be cylindrical with a mean $\mu r$ value of 0.9 .

Isomorphism with $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$ would require an axial ratio of about 5:1 and an $a$ parameter equal to twice the $\mathrm{Mn}-\mathrm{Cl}$ bond length in an $\mathrm{MnCl}_{6}$ octahedron. In the structure of $\mathrm{Rb}_{2} \mathrm{MnCl}_{4}$, Goodyear, Ali \& Steigmann (1977) found the mean value of the latter to be $2.52 \AA$, which is indeed very nearly $a / 2$. It was thus assumed at the outset that the two structures were isomorphous.
In the initial cycle of least-squares refinement idealized atomic positional parameters were used and an individual isotropic temperature factor of $2.0 \AA^{2}$ was assigned to each atom. After several cycles the residual, $R=\sum\left|F_{o}\right|-\left|F_{c}\right| / \sum\left|F_{o}\right|$, reduced to $8.0 \%$ at which stage the shifts in atomic parameters were all $<0.025 \sigma$ and the calculated structure factors for the 56 unobserved reflections were all less than the minimum observable value. For the structure factor calculations the atomic scattering factors for $\mathrm{Rb}^{+}, \mathrm{Mn}^{2+}$ and $\mathrm{Cl}^{-}$ were taken from International Tables for X-ray Crystallography (1974).
The final atomic parameters and some selected bond lengths are given in Tables 1 and 2 respectively.*

Discussion. This work forms part of an investigation of the structures of compounds in the system $\mathrm{RbCl} /$ $\mathrm{MnCl}_{2}$. It has shown that $\mathrm{Rb}_{3} \mathrm{Mn}_{2} \mathrm{Cl}_{7}$ is strictly isomorphous with $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$.

[^0]Table 1. Final atomic parameters (origin at centre $4 / \mathrm{mmm}$ )

|  | Equipoint | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Mn | $4(e)$ | 0 | 0 | $0.4014(8)$ | $2.03(44)$ |
| $\mathrm{Rb}(1)$ | $4(e)$ | 0 | 0 | $0.1833(6)$ | $2.47(30)$ |
| $\mathrm{Rb}(2)$ | $2(a)$ | 0 | 0 | 0 | $2.69(46)$ |
| $\mathrm{Cl}(1)$ | $2(b)$ | 0 | 0 | $\frac{1}{2}$ | $2.73(115)$ |
| $\mathrm{Cl}(2)$ | $4(e)$ | 0 | 0 | $0.3076(12)$ | $2.15(80)$ |
| $\mathrm{Cl}(3)$ | $8(g)$ | 0 | $\frac{1}{2}$ | $0.0961(10)$ | $2.88(52)$ |

Table 2. Selected bond lengths ( $\AA$ )

|  |  | Multiplicity | Location of atoms |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{Mn}-\mathrm{Cl}$ octahedron |
| $\mathrm{Mn}-\mathrm{Cl}(1)$ | $2 \cdot 577$ (21) |  | 1 | Mn |  | $\frac{1}{2}-z$ |
| $\mathrm{Mn}-\mathrm{Cl}\left(2^{\text {ii) }}\right.$ ) | 2.452 (38) | 1 | $\mathrm{Cl}(1)$ |  | 0 |
| $\mathrm{Mn}-\mathrm{Cl}\left(3^{\prime}\right)$ | 2.526 (5) | 4 | $\mathrm{Cl}\left(2^{\text {l }}\right.$ ) |  | $z$ |
| $\mathrm{Cl}(1)-\mathrm{Cl}\left(3^{1}\right)$ | 3.562 (19) | 4 | $\mathrm{Cl}\left(2^{\text {li }}\right.$ ) |  | $\frac{1}{2}-z$ |
| $\mathrm{Cl}\left(2^{11}\right)-\mathrm{Cl}\left(3^{1}\right)$ | $3 \cdot 565$ (29) | 4 | $\mathrm{Cl}^{(3)}$ |  | $z$ |
| $\mathrm{Cl}\left(3^{\text {l }}\right.$ )- $\mathrm{Cl}\left(3^{\text {III }}\right.$ ) | 3.571 (7) | 4 | $\mathrm{Cl}\left(3^{\text {li }}\right.$ ) | $\frac{1}{2}$ | $z$ |
|  |  |  | Rb (1) | 0 | $z$ |
| $\mathrm{Rb}-\mathrm{Cl}$ distances |  |  | $\mathrm{Rb}(2)$ | 0 | 0 |
| $\mathrm{Rb}(1)-\mathrm{Cl}\left(2^{1}\right)$ | $3 \cdot 249$ (36) | 1 |  |  |  |
| $\mathrm{Rb}(1)-\mathrm{Cl}\left(2^{\text {il }}\right.$ ) | $3 \cdot 579$ (7) | 4 |  |  |  |
| $\mathrm{Rb}(1)-\mathrm{Cl}\left(3^{\prime}\right)$ | 3.402 (21) |  |  |  |  |
| $\mathrm{Rb}(2)-\mathrm{Cl}(1)$ | 3.571 (7) | 4 |  |  |  |
| $\mathrm{Rb}(2)-\mathrm{Cl}\left(3^{\text {i }}\right.$ ) | $3 \cdot 562$ (19) | 8 |  |  |  |

The structure is related to that of perovskite in rather a simple way. Although a unit cell of perovskite-type structure would have the composition $\mathrm{RbMnCl}_{3}$, a single slice two unit cells thick has the composition $\mathrm{Rb}_{3} \mathrm{Mn}_{2} \mathrm{Cl}_{7}$. The structure can be regarded as consisting of such slices stacked perpendicular to the $c$ axis, alternate slices being displaced a distance $a / \sqrt{ } 2$ in the [110] direction (see Fig. 1), giving an idealized axial ratio of $5: 1$. The structure of $\mathrm{Rb}_{2} \mathrm{MnCl}_{4}$ (Goodyear, Ali \& Steigmann, 1977) was also found to be similarly related to perovskite, but in this case the slices were one unit cell thick.

The $\mathrm{Rb}(2)$ ions are located in the middle of the double perovskite layers and so each is surrounded by 12 Cl ions, whilst $\mathrm{Rb}(1)$ ions are situated on the surfaces of the slices and have the unusual coordination of nine Cl ions. As one might expect, the $\mathrm{Rb}(2)-\mathrm{Cl}$ distances are fairly uniform ( $3.56-3.57 \AA$ ) whilst, because of the unsymmetrical nature of the coordination group around $\mathrm{Rb}(1)$, the $\mathrm{Rb}(1)-\mathrm{Cl}$ distances range from 3.25 to $3.58 \AA$. In the structure of $\mathrm{Rb}_{2} \mathrm{MnCl}_{4}$, where every Rb ion is coordinated by nine Cl ions, the $\mathrm{Rb}-\mathrm{Cl}$ distances varied from 3.24 to 3.57 $\AA$.

The Mn ions lie at the centres of the perovskite unit cells and are hence octahedrally coordinated by Cl ions. Distortion in the $\mathrm{MnCl}_{6}$ octahedron is mainly due


Fig. 1. The contents of one unit cell of the $\mathrm{Rb}_{3} \mathrm{Mn}_{2} \mathrm{Cl}_{\text {, structure; }}$ double perovskite-type unit cells are shown as full lines.
to the mutual repulsion along [001] of neighbouring Mn ions in the double perovskite layers. For this reason the $\mathrm{Cl}\left(2^{\text {II }}\right)-\mathrm{Mn}-\mathrm{Cl}\left(3^{\prime}\right)$ angle is $91.5^{\circ}$ whilst $\mathrm{Cl}(1)-\mathrm{Mn}-$ $\mathrm{Cl}\left(3^{i}\right)$ is $88.5^{\circ}$. On the other hand, the $\mathrm{Cl}\left(3^{1}\right)-\mathrm{Mn}-$ $\mathrm{Cl}\left(3^{\text {II }}\right)$ angle is very nearly $90^{\circ}$. The average $\mathrm{Mn}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{Cl}$ bond lengths are 2.52 and $3.57 \AA$, respectively, agreeing to within $0.01 \AA$ with the values found in $\mathrm{Rb}_{2} \mathrm{MnCl}_{4}$.

## References

Goodyear, J., Ali, E. M. \& Steigmann, G. A. (1977). Acta Cryst. B33, 2932-2933.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Ruddlesden, S. N. \& Popper, P. (1958). Acta Cryst. 11, 54-55.
Seifert, H. J. \& Koknat, F. W. (1965). Z. Anorg. Allg. Chem. 341, 269-280.


[^0]:    *A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33588 ( 2 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

